Normalenformen der Ebenengleichung

Einleitung: Bisher haben wir eine Ebene im Raum durch einen Stützvektor \vec{p}

und zwei Spannvektoren \vec{u} und \vec{v} beschrieben. Eine einfachere Möglichkeit ist, die Ebene durch einen zur Ebene orthogonalen (im rechten Winkel) Vektor zu bestimmen. Dieser Vektor \vec{n} wird als Normalenvektor bezeichnet, der orthogonal zu zwei gegebenen

(linear unabhängigen) Spannvektoren der Ebene E ist.

Normalenform der Ebenengleichung: $(\vec{x} - \vec{p}) \cdot \vec{n} = 0$

Koordinatengleichung der Ebene E: $x_1 \cdot a_1 + x_2 \cdot a_2 + x_3 \cdot a_3 = b$

Koordinaten a_1, a_2, a_3 bilden Normalenvektor \vec{n} der Ebene E

Bsp.: $E : \vec{x} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ -5 \\ 8 \end{pmatrix}$

Stützvektor $\vec{p} = \begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix}$ der Ebene E

 \vec{n} muss orthogonal (im rechten Winkel) zu den beiden Richtungsvektoren sein:

$$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \cdot \vec{n} = 0 \text{ und } \begin{pmatrix} 0 \\ -5 \\ 8 \end{pmatrix} \cdot \vec{n} = 0$$

 $I \qquad 1 \cdot n_1 + 0 \cdot n_2 + 2 \cdot n_3 = 0$

II $0 \cdot n_1 + (-5) \cdot n_2 + 8 \cdot n_3 = 0$ Umformen

 $I n_1 = -2n_3$

$$II \qquad n_2 = \frac{8}{5}n_3$$

 $n_3 = 5$ setzen \rightarrow daraus ergeben sich ganzzahlige Lösungen für $n_2 = 8$ und $n_1 = -10$

Übungsaufgaben:

Parameterform:

1.) Wie lautet die Normalenform? Bestimme daraus die Koordinatengleichung.

a)
$$E: \vec{x} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + r \cdot \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ -2 \\ 2 \end{pmatrix}$$

b)
$$E: \vec{x} = \begin{pmatrix} -1\\3\\0 \end{pmatrix} + r \cdot \begin{pmatrix} 2\\-2\\1 \end{pmatrix} + s \cdot \begin{pmatrix} 1\\0\\-3 \end{pmatrix}$$

2.) Setze die Koordinatengleichung in die Normalenform um.

a)
$$x + y + z = 5$$

b)
$$5x - 4y = 0$$

c)
$$x + z = 4$$

d)
$$4x + 3y = 12$$

3.) Gib die Normalenform an und schreibe diese anschließend als Koordinatengleichung.

a)
$$\vec{n} = \begin{pmatrix} -3\\2\\-7 \end{pmatrix}$$
 $P(1/-2/-1)$
b) $\vec{n} = \begin{pmatrix} 4\\-2\\10 \end{pmatrix}$ $P(8/2/6)$

b)
$$\vec{n} = \begin{pmatrix} 4 \\ -2 \\ 10 \end{pmatrix}$$
 P (8/2/6)

4.) Gesucht ist eine zu E parallele Ebene F die durch P geht. Bestimme die Gleichung dieser Ebene F.

a)
$$E: 2x_1 + 4x_2 - x_3 = 8$$

P (-2/4/6)

Lösungen:

1.)

a)
$$\vec{p} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

$$-n_1 + 3n_2 + n_3 = 0$$
 \Rightarrow $3n_2 + n_3 = n_1$

$$II - 2n_2 + 2n_3 = 0$$
 $|+2n_2|: 2$

$$n_2 = 2$$

$$n_3 = 2$$

Normalenform:
$$\begin{vmatrix} \vec{x} - \begin{pmatrix} 1 \\ -2 \\ 1 \end{vmatrix} \begin{vmatrix} \begin{pmatrix} 8 \\ 2 \\ 2 \end{vmatrix} = 0$$

Koordinatengleichung:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 2 \\ 2 \end{pmatrix} \Rightarrow 8x_1 + 2x_2 + 2x_3 = 6$$

$$I 2n_1 - 2n_2 + n_3 = 0 \rightarrow n_3 = \frac{2}{7}n_2$$

$$// \qquad n_1 - 3n_3 = 0 \qquad \rightarrow n_1 = 3n_3 | in \quad I$$

b)
$$\vec{p} = \begin{pmatrix} -1\\3\\0 \end{pmatrix}$$
 setze $n_2 = 7$

$$n_3 = 2$$
 $\Rightarrow \vec{n} = \begin{pmatrix} 6 \\ 7 \\ 2 \end{pmatrix}$

$$n_1 = 6$$

Normalenform:
$$\begin{bmatrix} \vec{x} - \begin{pmatrix} -1 \\ 3 \\ 0 \end{bmatrix} \cdot \begin{pmatrix} 6 \\ 7 \\ 2 \end{pmatrix} = 0$$
 Koordinatenform: $6x_1 + 7x_2 + 2x_3 = 15$

2.)

a)
$$x + y + z = 5$$
 $\vec{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Normalenform: $\begin{bmatrix} \vec{x} - \begin{pmatrix} 5 \\ 0 \\ 0 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 0$

b)
$$5x - 4y + 0z = 0 \qquad \vec{n} = \begin{pmatrix} 5 \\ -4 \\ 0 \end{pmatrix} \text{ Normalen form: } \qquad \begin{bmatrix} \vec{x} - \begin{pmatrix} 4 \\ 5 \\ 0 \end{bmatrix} - \begin{pmatrix} 5 \\ -4 \\ 0 \end{pmatrix} = 0$$

c)
$$x+z=4$$
 $\vec{n} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ Normalenform: $\begin{bmatrix} \vec{x} - \begin{pmatrix} 2 \\ 0 \\ 2 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 0$

d)
$$4x + 3y = 12$$
 $\vec{n} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}$ Normalenform:
$$\vec{x} - \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} = 0$$

3.)

a) Nf.:
$$\begin{bmatrix} \vec{x} - \begin{pmatrix} 1 \\ -2 \\ -1 \end{bmatrix} \cdot \begin{pmatrix} -3 \\ 2 \\ -7 \end{pmatrix} = 0 \quad \text{Kf.:} \qquad -3x_1 + 2x_2 - 7x_3 = 0$$
b) Nf.:
$$\begin{bmatrix} \vec{x} - \begin{pmatrix} 8 \\ 2 \\ 6 \end{bmatrix} \cdot \begin{pmatrix} 4 \\ -2 \\ 10 \end{bmatrix} = 0 \quad \text{Kf.:} \qquad 4x_1 - 2x_2 + 10x_3 = 88$$

b) Nf.:
$$\begin{bmatrix} \vec{x} - \begin{pmatrix} 8 \\ 2 \\ 6 \end{bmatrix} \cdot \begin{pmatrix} 4 \\ -2 \\ 10 \end{bmatrix} = 0 \quad \text{Kf.:} \qquad 4x_1 - 2x_2 + 10x_3 = 88$$

4.)
$$\vec{n} = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$$
 P (-2/4/6)

$$\begin{bmatrix} \vec{x} - \begin{pmatrix} -2 \\ 4 \\ 0 \end{bmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 0 \rightarrow Gleichung \quad der \quad Ebene \quad F$$

Oder:

$$2x_1 + 4x_2 - x_3 = b \qquad \qquad P \quad einsetzen$$

$$2 \cdot (-2) + 4 \cdot 4 - 1 \cdot 6 = 6$$
 \rightarrow Gleichung der Ebene F